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Abstract—Physical states can be fed back by the phys-
iological signal as it contains the information of healthy
systems. Specifically, dynamical time series is valuable data
to reflect the pathological states by means of measuring the
complexity of time series. Nevertheless, how to measure the
complexity of physical signal is still an open issue. In this
paper, a novel complexity measurement algorithm based on
belief Kullback-Leibler (KL) divergence, called BKLDC, is
proposed to calculate the complexity of biological systems time
series. BKLDC algorithm firstly truncates biological systems
signal into several slices with boundaries. In this case, the
interval and border values are taken into account, which
can differentiate the time series data. Then, based on the
Dempster-Shafer (D-S) evidence theory, the format of time
series data is converted to basic probability assignments (BPA).
So, the feature of time series is obtained effectively as BKLDC
algorithm considers the uncertainty of data signal. Hence, the
complexity of physiological signal can be obtained by figuring
out the divergence of BPAs. The divergence reflects discrepancy
of BPAs, which presents the inherent complexity of data to
some extent. In addition, an implementation in cardiac inter-
beat interval time series demonstrates the out-performance of
BKLDC algorithm for pathological states analysis.

Keywords-D-S evidence theory; Belief KL divergence; Dy-
namical complexity analysis; Biological systems.

I. INTRODUCTION

Biological systems contains precious information based

on physiological signal time series, which benefits patholog-

ical researches [1]. Complexity analysis of biological time

series plays an important parts in detecting the healthy states

of people. In the field of physiology, the more information in

time series, the larger complexity should be. In this case, en-

tropy measurement can be used to figure out the uncertainty

of time series. At the same time, uncertainty measurement

is widely applied in decision making [2]. However, there

is still an open issue with conflicting information, which

may lead to counter intuitive phenomenon. Hence, scholars

have focused on the uncertainty management, and several

well-known works have been proposed to make multi-source

information more effectively, including random permutation

set [3], complex evidence theory [4], weighted network [5],

Z-network [6], and so on [7].

Consider that D-S evidence theory can deal with uncer-

tain information in a flexible way [8, 9], because it is a

generalization of typical probability, which can be used in

weaker conditions. D-S evidence theory is widely used in

decision making [10], classification issues [11], and so on

[12]. Recently, the complex evidence theory is used in the

quantum framework [13], which effectively support quantum

decision making [14]. Hence, in this paper, D-S evidence

theory is taken into consideration. The feature of biological

systems time series can be extracted by converting the format

into BPAs. The mass function contains relative information

volume [15]. Especially, both singleton sets and multi-

element sets can represent characteristics of time series,

respectively. Then, the complexity of biological systems

can be measured by figuring out the divergence or distance

between two BPAs, which is effective criteria to reflect the

intrinsic features of time series [16].

Studying recent well-known methods, Xiao et al. [17] con-

sidered both subjective weights and objective weights, and

proposed a uniform BJS divergence-based method. Zhang

and Xiao [18] took the discrepancy and correlationship of

both singleton sets and multi-element sets into account by

means of SEBχ2 divergence to measure the difference

between belief function. Zhu et al. [19] proposed a general-

ized Rényi divergence in EEG data analysis. According to

methods above, the belief Kullback-Leibler divergence [20]

could be used to process the time series data points whether

they are on the boundaries of time slices.

In this work, a novel dynamical complexity analysis algo-

rithm for biological systems based on belief KL divergence,

called BKLDC, is proposed to figure out the complexity of

biological systems time series. Firstly, BKLDC algorithm

changes time series into BPAs. It is a step to extract the

feature of biological systems. Secondly, the intrinsic feature

of time series can be measured by figuring out the divergence

between two BPAs. In addition, to show the out-performance

of BKLDC algorithm, an application in cardiac inter-beat

interval time series is carried out.

The main contribution points of this research are listed as

follows:

• Based on D-S evidence theory, BKLDC algorithm

14

2022 10th International Conference on Information Systems and Computing Technology (ISCTech)

979-8-3503-3293-3/22/$31.00 ©2022 IEEE
DOI 10.1109/ISCTech58360.2022.00009

20
22

 1
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 In
fo

rm
at

io
n 

Sy
st

em
s a

nd
 C

om
pu

tin
g 

Te
ch

no
lo

gy
 (I

SC
Te

ch
) |

 9
79

-8
-3

50
3-

32
93

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IS

CT
EC

H5
83

60
.2

02
2.

00
00

9

Authorized licensed use limited to: CHONGQING UNIVERSITY. Downloaded on June 04,2023 at 10:56:52 UTC from IEEE Xplore.  Restrictions apply. 



converts biological time series into mass function.

• Based on belief Kullback-Leibler divergence, BKLDC

algorithm can measure the intrinsic feature of time series to

reflect the physiological states of subjects.

• An application in cardiac inter-beat interval time series

is carried out to distinguish the pathological states, which

shows the effectiveness BKLDC algorithm.

The organization of this work is summarized as follows.

Section 2 represents the basic concepts. Section 3 shows the

detail of BKLDC algorithm. The application and comparison

are carried out in Section 4 to demonstrate the performance

of the proposed method. Section 5 makes a conclusion of

this paper.

II. PRELIMINARIES

In this section, several basic concepts of D-S evidence

theory and belief KL divergence are briefly introduced.

A. D-S evidence theory

D-S evidence theory is a generalization of typical prob-

ability that can effectively deal with uncertain information

fusion [8, 9], because it addresses uncertainty problems in

weaker conditions. D-S evidence theory degenerates into

classical probability theory when all probability values are

known.

Definition 1 (Framework of discernment).
Let the discernment Θ be a finite set which can be defined

as:
Θ = {h1, h2, . . . , hn} . (1)

Then, its power set 2Θ can be defined as:

2Θ = {∅, {h1} , . . . , {h1, h2} , . . . , {h1, h2, . . . , hi} , . . . ,Θ} ,
(2)

where ∅ indicates the empty set.

Definition 2 (Mass function).
Based on discernment Θ, the mass function m can be

defined as:
m : 2Θ → [0, 1], (3)

with the rule of∑
E∈2Θ

m(E) = 1 and m(∅) = 0. (4)

If m(E) > 0, E is a focal element.

Definition 3 (Dempster’s rule of combination).
Consider two BPAs m1 and m2. The rule of Dempster’s

combination is describe as:

m(B) =

⎧⎪⎨
⎪⎩

1

1− k

∑
P∩Q=B

m1(P )m2(Q), B �= ∅,

0, B = ∅,

(5)

and
k =

∑
P∩Q=∅

m1(P )m2(Q), (6)

where P and Q are focal elements and k is regarded as a

conflict coefficient.

B. Divergence measure

Kullback-Leibler divergence is usually used to measure

the discrepancy between two probabilities. Here, the belief

Kullback-Leibler divergence is introduced to measure the

divergence degree among evidence.

Definition 4 (Belief Kullback-Leibler divergence).

Let m1 and m2 be two BPAs, the belief KL divergence
between m1 and m2 can be defined as:

DKL (m1,m2) =
∑
i

1

2|Ai| − 1
m1 (Ai) log

(
m1 (Ai)

m2 (Ai)

)
, (7)

where Ai is the focal elements of mass function and
| · | represents the cardinality of focal element. Then, a
symmetrical KL divergence based on Eq. (7) can be defined
as:

Div(m1,m2) = Div(m2,m1)

=
DKL(m1,m2) +DKL(m2,m1)

2
.

(8)

In this paper, based on Eq. (8) the symmetrical belief KL

divergence is used to measure the discrepancy between two

BPAs.

III. BELIEF KL DIVERGENCE-BASED DYNAMICAL

COMPLEXITY ANALYSIS ALGORITHM FOR BIOLOGICAL

SYSTEMS

To effectively measure dynamical complexity of biolog-

ical systems, an algorithm based on belief KL divergence,

called BKLDC, is proposed in this section. The algorithm

can be split into two component. First, a divergence sequence

of time series can be obtained based on belief KL diver-

gence. Second, the average value of divergence sequence

can be used as complexity value of dynamical biological

systems time series. The processing flowchart of BKLDC is

shown in Fig. 1.

In the first component, the time series of biological

systems is described as H = {t1, . . . , ti, . . . , tN} with

length N . To measure the intrinsic discrepancy, two types

of consecutive and non-overlapping time windows are taken

into account to divided time series as type X
{
w

(η)
Xi

}
and

type Y
{
w

(η)
Y j

}
. Here, w

(η)
Xj =

{
t(j−1)η+1, . . . , t(j−1)η+η

}
is

of length η, where j is the window index which ranges from

1 to N/η. Type Y is the truncation of type X in each cor-

responding window as w
(η)
Y j =

{
t(j−1)η+1, . . . , t(j−1)η+δ

}
,

where δ < η.

Then, the lower and the upper boundaries of time series H
are regarded as rmin and rmax, respectively. Next, the time

interval is equally split into k slices. Each slice contains

an upper boundary and a lower boundary, such as Ms and

Ms+1 of the sth slice. Hence, a slice can represents the
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Figure 1. Flowchart of the BKLDC algorithm for biological systems.

specific state. If data points are in the same slice, then it

can be consider that they are in the same state. Specifically,

a data point is consider to have concrete state when it falls

on the boarder. On the contrary, it has an uncertain state

when falls in the interval.

Let the total number of data points over wij between Ms
and Ms+1 be pij . Specifically, let data points γ of length
qij fall on the border Ms coincidentally. The BPAs based
on each time window can be defined as:

mij :

⎧⎪⎨
⎪⎩
m

(η)
ij ({Ms}) = qij

|wij | , if γ falls on the boundary s,

m
(η)
ij ({Ms,Ms+1}) = pij

|wij | , otherwise,

(9)
where i ∈ {X,Y }. Next, considering that points are all

in the interval, the divergence D
(η)
j in each corresponding

window is figured out based on symmetrical belief KL
divergence measure:

D
(η)
j = Div(mXj ,mY j)

=
1

2
·

k∑
s=1

mXj ({Ms,Ms+1})
2|{Ms,Ms+1}| − 1

log

(
mXj ({Ms,Ms+1})
mY j ({Ms,Ms+1})

)

+
1

2
·

k∑
s=1

mY j ({Ms,Ms+1})
2|{Ms,Ms+1}| − 1

log

(
mY j ({Ms,Ms+1})
mXj ({Ms,Ms+1})

)

=
1

2
·

k∑
s=1

(
pXj

3 · |wXj | −
pY j

3 · |wY j |
)
log

pXj · |wY j |
pY j · |wXj | .

(10)

Hence, a belief KL divergence sequence
{
D

(η)
j

}
of original

time series is constructed.

Property 1. When all the data fall on the boundaries of

time window, the D
(η)
j degenerates to:

D
(η)
j = Div(mXj ,mY j)

=
1

2
·

k∑
s=1

mXj ({Ms})
2|{Ms}| − 1

log

(
mXj ({Ms})
mY j ({Ms})

)

+
1

2
·

k∑
s=1

mY j ({Ms})
2|{Ms}| − 1

log

(
mY j ({Ms})
mXj ({Ms})

)

=
1

2
·

k∑
s=1

(
qXj

|wXj | −
qY j

|wY j |
)
log

qXj · |wY j |
qY j · |wXj | .

(11)

Property 2. D(η)
j is symmetric as:

D
(η)
j = Div(mXj ,mY j) = Div(mY j ,mXj) (12)

Property 3. When mXj = mY j , the D
(η)
j is regarded as:

D
(η)
j = 0. (13)

Then, in the second component of BKLDC algorithm, the

average value of divergence sequence D
(η)
j is obtained as the

complexity value Φ of a biological systems time series:

λ =

∑N/η
i=1 D

(η)
j

N/η
. (14)

The pseudocode of dynamical complexity analysis algo-

rithm for biological systems based on belief KL divergence

is shown in Algorithm 1.

IV. APPLICATION IN CARDIAC INTER-BEAT INTERVAL

TIME SERIES CLASSIFICATION

In this section, the biological systems time series data

is taken into account, which shows the way of selecting
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Algorithm 1: Complexity analysis algorithm for

biological systems based on belief KL divergence

Input: Biological systems time series

H = {t1, . . . , tN};

Output: Complexity result λ
1 Split the time series {xi} into two types of windows{

w
(η)
Xj

}
and

{
w

(η)
Y j

}
;

2 Determine the lower and upper sides of time interval

{xmin, xmax};

3 Divided each time window into k slices;

4 Count the number of data points on or between

boundaries;

5 for i=1;i≤ N/η do
6 Figure out the BPAs m1i and m2i of each time

window by using Eq. (9);
7 end
8 for i=1;i≤ N/η do
9 Calculate the divergence D

(η)
j in each

corresponding window by using Eq. (10);
10 end
11 Calculate the complexity of biological systems time

series λ by using Eq. (14);

12 return λ.

valid data points. Next, an implement of BKLDC algorithm

for biological systems is carried out to show the effective

performance in specific time series. Here lists the software

that used: Origin� (The MicroCal, Inc., Northampton, MA,

USA) with version of 2021 (64-bit) 9.8.0.200.

A. Data Description

In this study, cardiac inter-beat interval time series

is applied to demonstrate the feasibility of BKLDC

algorithm for biological systems complexity analysis.

The data is selected from the databases on PhysioNet

(https://physionet.org) as follows:

• BIDMC Congestive Heart Failure Database (CHF);

• MIT-BIH Normal Sinus Rhythm Database (Healthy);

• Long Term AF Database (AF).

The above databases are long-term ECG (Electrocardiog-

raphy) databases with 20-24 hours record. The numbers of

subject are 15, 18 and 84, respectively. Before the exper-

iment, data sets need be processed by extract the feature

fragments. Each subject in CHF and Healthy databases

is truncated into 5 sets inter-beat interval time series by

utilizing the first 500 data points from 10,000 data points.

Then, 75 records in AF data sets are adopted according to

the annotation in PhysioNet. finally, there are 240 sets inter-

beat interval time series. Specifically, 75, 90 and 75 records

are from CHF Healthy and AF, respectively.

Next, the time series is processed. First, to release the

influence of noise and detection error, data points {ti} are

ranked and split into 1000 segments. Then, the 1st and

999th 1000-quantiles of the ranked segments are regarded

as rmin = 0.3 and rmax = 1.6.

B. Implementation of the BKLDC algorithm

Three representative instances from CHF, Healthy and AF

are carried out to demonstrate the process of BKLDC algo-

rithm for biological systems. To simplify the experiment,

each time series is analyzed with 140 data points, whose

parameters are at η = 10, δ = 5 and k = 55. In this case,

each time series will be split into 14 time windows.

Fig. 2 shows three representative time series, respectively.

Note that CHF subject has the highest heart-beat interval,

and the interval between heartbeats tends to flatten out.

Compared with Healthy subject, the heartbeat of AF subject

fluctuate more obviously.

According to Eqs. (9)-(13), Table I and Fig. 3 demonstrate

the process of first component of BKLDC algorithm. The

divergence sequence of each subject can be obtained, which

shows the inner feature of time series. After observing three

divergence sequences, note that CHF subject has the lowest

divergence values in time windows, while that of Healthy

subjects rise and down at higher values. Correspondingly,

the divergence sequence of AF is at a moderate level. In this

case, it can be regarded that the first component of BKLDC

can effectively extract the feature of time series.

Then, based on Eq. (14), the complexity of biological

time series can be obtained as 0.0143 of CHF, 0.0468 of

CHF and 0.0331 of AF. Hence, Healthy subject reaches the

highest complexity while CHF subject has lowest complexity

value. It is in line with the reality, because healthy people

have the most complex biological systems to control the

operation in heart system. On the contrary, the complexity

of biological systems in pathological groups is relatively

low, because they have partial loss of heart function. In

addition, AF subjects have larger change range than CHF

subjects with sharp increase and decrease trend. Hence, the

complexity rule should be followed as: Healthy subjects <
AF subjects < CHF subjects.

Next, figure out the complexity value of 240 sets inter-

beat interval time series. Fig. 4 shows a scatter diagram

to illustrate the performance of BKLDC algorithm in three

different kinds of subjects. Based on the distribution of all

the scatter points, it can be found that Healthy people reaches

highest complexity value most of the time. Relatively, CHF

subjects are at the bottom, while complexity value of AF

subjects are higher than CHF and lower than Healthy. In

this case, BKLDC shows out-performance to extract the

characteristic of biological systems time series.
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Figure 2. The original time series with 140 data points of specific instances. (a) Original time series of CHF subject. (b) Original time series of Healthy
subject. (c) Original time series of AF subject.

Table I
THE DIVERGENCE VALUE OF CHF, HEALTHY AND AF IN EACH TIME WINDOW.

Subject Win1 Win2 Win3 Win4 Win5 Win6 Win7 Win8 Win9 Win10 Win11 Win12 Win13 Win14

CHF 0.0138 0.0303 0.0299 0.0074 0.0377 0.0135 0.0000 0.0211 0.0048 0.0000 0.0000 0.0231 0.0068 0.0116

Healthy 0.0693 0.0377 0.0530 0.0231 0.0462 0.0578 0.0578 0.0135 0.0693 0.0693 0.0395 0.0578 0.0213 0.0530

AF 0.0279 0.0231 0.0462 0.0462 0.0048 0.0462 0.0231 0.0395 0.0351 0.0279 0.0414 0.0279 0.0578 0.0163
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Figure 3. Demonstration of BKLDC algorithm for biological systems on representative subjects.

0 10 20 30 40 50 60 70 80 90

0.00

0.02

0.04

0.06

0.08

0.10

 CHF

 AF

 Healthy

C
o

m
p

le
x

it
y

 v
al

u
e

Subject index

Figure 4. The complexity value in 240 sets cardiac inter-beat interval time
series.
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Figure 5. The pattern classification accuracy in cardiac inter-beat interval
time series.
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C. Classification in Cardiac Inter-beat Interval Time Series
Based on BKLDC

In this section, an application in cardiac inter-beat interval
time series classification is carried out to demonstrate the
effectiveness of BKLDC algorithm. The evaluation index,
sensitivity of pathological subjects and specificity of healthy
subjects are defined as follows:

Specificity:Vsp =
TH

TH + FH
,

Sensitivity:Vse =
TP

TP + FP
,

Accuracy:Vac =
TH + TP

TH + FH + TP + FP
,

(15)

where TH and FH represent the amount of healthy subjects

that classified correctly and falsely, respectively. Besides,

TP and FP represent the amount of pathology subjects that

classified correctly and falsely.

At η = 10, δ = 5 and k = 55, three different lengths

of time series are taken into consideration as: N = 140,

N = 300 and N = 500. Based on Eq. (15), Table II shows

the evaluation criteria value. It can be found that BKLDC

algorithm has outstanding results even with smaller data size.

Hence, the proposed method is able to select the healthy

subjects from pathological subjects at one time when there

is a few data points. In other words, BKLDC algorithm is

not sensitive to the length of time series, which shows the

robustness that can be applied in other applications.

Table II
THE EVALUATION INDEX VALUE IN APPLICATION BASED ON BKLDC.

N = 140 N = 300 N = 500

Vse in CHF 0.7013 0.7267 0.7133

Vse in AF 0.8333 0.7933 0.8215

Vsp in Healthy 0.8230 0.8124 0.8248

Accuracy 0.8044 0.8189 0.8150

D. Comparison

In this part, several classical machine learning methods

and a well-known method [21], MSE, are used to make

comparison with BKLDC algorithm. The cardiac inter-beat

interval time series pattern classification accuracy is shown

in Table III, and Fig. 5 is a bar chart to show the accuracy

criteria based on different data lengths.

It can be found that the proposed method, BKLDC,

reaches the highest classification accuracy of 0.8189 at N =
300. Compared with classical machine learning methods,

including K-means and Spectral Clustering, BKLDC far

outperforms them. The BKLDC is twice as accurate as the

classical machine learning methods. Considering MSE, it

has higher accuracy values than classical machine learning

method, and as the length of data points increases, so does

the accuracy. Nevertheless, MSE still can not catch up with

the BKLDC.

Therefore, according to the information above, BKLDC

algorithm shows superiority to measure the complexity of bi-

ological systems, and can make high classification accuracy

to distinguish healthy subjects and pathological subjects.

Table III
THE PATTER CLASSIFICATION ACCURACY BASED ON DIFFERENT

METHODS.

N = 140 N = 300 N = 500

K-means 0.3822 0.3711 0.4078

Spectral clustering 0.4044 0.4100 0.4056

MSE 0.6738 0.7024 0.7248

BKLDC 0.8044 0.8189 0.8150

V. CONCLUSION

Biological systems contained various information to re-

flect the states of people. Especially, the complexity anal-

ysis for physiological time series was important. This re-

search proposed a novel complexity analysis method, called

BKLDC, which could be applied in biological systems

detection. BKLDC converted time series into BPAs based on

Dempster-Shafer evidence theory. Specifically, the boundary

and interval values were represented differently to illustrate

feature effectively. Then, belief Kullback-Leibler divergence

was taken into account to measure the inner discrepancy

of time series. In addition, an application in cardiac inter-

beat interval time series was carried out. BKLDC shew good

performance in complexity analysis for biological systems.

Besides, BKLDC could distinguish healthy subjects and

pathological subjects effectively. In the future study, time

series should be processed to better extract features, and

the algorithm should be optimized to adapt more biological

systems data.
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