

Belief Kullback–Leibler Divergence-based Dynamical Complexity Analysis for Biological Systems

Lang Zhang and Fuyuan Xiao*

Chongqing University, Chongqing, China

The 10th International Conference on Information Systems and Computing Technology

(ISCT)

Information Processing and Intelligent Systems Lab

Outline

Background & Motivation

Preliminaries

- **The Proposed Method**
- **818 Simulation Experiments**

Cardiac inter-beat signals

Recent works for uncertain information management:

Process the time series data points whether they are on the boundaries of time slice

Dempster-Shafer evidence theory

Definition 1 (Framework of discernment).

Let Θ be a set that consists of r mutually exclusive and collectively exhaustive events,

$$
\Theta = \{e_1, e_2, \dots, e_i, \dots, e_r\}
$$

which indicates the framework of discernment. The power set 2^{Θ} is used to describe uncertainty which can be defined as follows:

$$
2^{\Theta} = \{ \emptyset, \{e_1\}, \dots, \{e_r\}, \{e_1, e_2\}, \dots, \{e_1, e_2, \dots, e_h\}, \dots, \Theta \},
$$

where \emptyset indicates the empty set.

Definition 2 (Mass function).

Based on the frame of discernment Θ , m as a mass function, also known as BPA, is a mapping from 2^{Θ} to [0,1] which is defined as:

$$
m: 2^{\Theta} \rightarrow [0,1].
$$

Because events must arise from propositions in the framework of discernment and empty set is not the cause of the events, it abides the rule of

$$
\sum_{E\in 2^{\Theta}} m(E) = 1 \text{ and } m(\emptyset) = 0.
$$

If $m(E) > 0$ *E* is a focal element.

Belief KL divergence measure \bullet

> Let m_1 and m_2 be two BPAs, the belief KL divergence between m_1 and m_2 can be defined as:

$$
D_{KL}(m_1, m_2) = \sum_{i} \frac{1}{2^{|A_i|} - 1} m_1(A_i) \log \left(\frac{m_1(A_i)}{m_2(A_i)} \right)
$$

Make it be symmetric \bullet

$$
Div(m_1, m_2) = Div(m_2, m_1)
$$

=
$$
\frac{D_{KL}(m_1, m_2) + D_{KL}(m_2, m_1)}{2}
$$

Figure 1. Flowchart of the BKLDC algorithm for biological systems.

• **Two lists of consecutive non-overlapping time windows**

$$
w_{Xj}^{(\eta)} = \left\{ t_{(j-1)\eta+1}, \dots, t_{(j-1)\eta+\eta} \right\}
$$

$$
w_{Yj}^{(\eta)} = \left\{ t_{(j-1)\eta+1}, \dots, t_{(j-1)\eta+\delta} \right\}
$$

• **Focal element of BPA**

$$
m_{ij} : \begin{cases} m_{ij}^{(\eta)}(\{M_s\}) = \frac{q_{ij}}{|w_{ij}|}, & \text{if } \gamma \text{ falls on the boundary } s, \\ m_{ij}^{(\eta)}(\{M_s, M_{s+1}\}) = \frac{p_{ij}}{|w_{ij}|}, & \text{otherwise,} \end{cases}
$$

• *Dj* **in each corresponding window**

$$
D_j^{(\eta)} = Div(m_{Xj}, m_{Yj})
$$

= $\frac{1}{2} \cdot \sum_{s=1}^k \frac{m_{Xj} (\{M_s, M_{s+1}\})}{2|\{M_s, M_{s+1}\}| - 1} \log \left(\frac{m_{Xj} (\{M_s, M_{s+1}\})}{m_{Yj} (\{M_s, M_{s+1}\})}\right)$
+ $\frac{1}{2} \cdot \sum_{s=1}^k \frac{m_{Yj} (\{M_s, M_{s+1}\})}{2|\{M_s, M_{s+1}\}| - 1} \log \left(\frac{m_{Yj} (\{M_s, M_{s+1}\})}{m_{Xj} (\{M_s, M_{s+1}\})}\right)$
= $\frac{1}{2} \cdot \sum_{s=1}^k \left(\frac{p_{Xj}}{3 \cdot |w_{Xj}|} - \frac{p_{Yj}}{3 \cdot |w_{Yj}|}\right) \log \frac{p_{Xj} \cdot |w_{Yj}|}{p_{Yj} \cdot |w_{Xj}|}.$

8

• **Property 1.** When all the data fall on the boundaries

$$
D_j^{(\eta)} = Div(m_{Xj}, m_{Yj})
$$

= $\frac{1}{2} \cdot \sum_{s=1}^k \left(\frac{q_{Xj}}{|w_{Xj}|} - \frac{q_{Yj}}{|w_{Yj}|} \right) \log \frac{q_{Xj} \cdot |w_{Yj}|}{q_{Yj} \cdot |w_{Xj}|}.$

• **Property 2.** $D_j^{(\eta)}$ is symmetric as:

$$
D_j^{(\eta)} = Div(m_{Xj}, m_{Yj}) = Div(m_{Yj}, m_{Xj})
$$

• **Property 3.** When $m_{Xj} = m_{Yj}$, the $D_j^{(\eta)}$ is regarded as:

$$
D_j^{(\eta)}=0.
$$

• **The average divergence represents the complexity of a biological system time series λ**

$$
\lambda = \frac{\sum_{i=1}^{N/\eta} D_j^{(\eta)}}{N/\eta}.
$$

The Proposed Method KO)

The pseudocode of dynamical complexity analysis algorithm for biological

systems based on KL divergence is shown in Algorithm 1.

12 return λ .

10

Cardiac inter-beat time series

In this study, cardiac inter-beat interval time series is applied to demonstrate the feasibility of BKLDC algorithm for biological systems complexity analysis. The data is selected from the databases on PhysioNet as follows:

- BIDMC Congestive Heart Failure Database (CHF);
- MIT-BIH Normal Sinus Rhythm Database (Healthy);
- Long Term AF Database (AF).

Data processing

- Each subject is truncated into 5 sets inter-beat interval time series by utilizing the first 500 data points from 10,000 data points.
- Hence, there are 240 sets inter-beat interval time series. Specifically, 75, 90 and 75 records are from CHF Healthy and AF, respectively.
- The data points $\{x_i\}$ are ranked and split into 1000 segments. To release the influence of noise and detection error, the 1*st* and 999*th* 1000-quantiles of the ranked segments are regarded as $x_{min} = 0.3$ and $x_{max} = 1.6$

• Table 1 shows the 14 divergence values for each time

window of data sets, respectively.

• Fig. 3 shows the three original time series and divergence series, respectively.

Figure 4. The complexity value in 240 sets cardiac inter-beat interval time series.

Sensitivity of pathological subjects and specificity of healthy subjects are defined as follows:

Specificity:
$$
V_{sp} = \frac{T_H}{T_H + F_H}
$$
,
\nSensitivity: $V_{se} = \frac{T_P}{T_P + F_P}$,
\nAccuracy: $V_{ac} = \frac{T_H + T_P}{T_H + F_H + T_P + F_P}$

where T_H and F_H represent the amount of healthy subjects that classified correctly and falsely, respectively. Besides, T_p and F_p represent the amount of pathology subjects that classified correctly and falsely.

Table II THE EVALUATION INDEX VALUE IN APPLICATION BASED ON BKLDC.

	$N = 140$	$N=300$	$N = 500$
V_{se} in CHF	0.7013	0.7267	0.7133
V_{se} in AF	0.8333	0.7933	0.8215
V_{sp} in Healthy	0.8230	0.8124	0.8248
Accuracy	0.8044	0.8189	0.8150

• The patter classification accuracy based on different methods.

				100.0% - 80.0%	$N = 140$ $N = 300$ $N = 500$			
	$N=140$	$N=300$	$N=500$	$\frac{1}{2}$ 60.0% –				
K-means	0.3822	0.3711	0.4078					
Spectral clustering	0.4044	0.4100	0.4056	Classification 40.0% -				
MSE	0.6738	0.7024	0.7248	$20.0%$ -				
BKLDC	0.8044	0.8189	0.8150					
				0.0%	K-means	SpectralClustering	MSE	BKLDC

Figure 5. The pattern classification accuracy in cardiac inter-beat interval time series.

Conclusion

Contribution:

- Biological systems time series data is converted into mass function by using the D-S evidence theory, where feature of data can be extracted.
- The proposed BKLDC algorithm proposes an effective way to figure out the complexity of time series data in biological systems by generating BPAs and measure the average divergence of them.
- An application for pathological states analysis in cardiac inter-beat interval time series is carried out to illustrate the effectiveness of BKLDC algorithm.

Future work:

• The time complexity of the BKLDC algorithm for biological systems should be addressed to adapt to real-time data flexibly.

THANK YOU VERY MUCH!

Any questions and comments are welcome!

Email address: zhanglang_cqu@163.com