

Belief Kullback–Leibler Divergence-based Dynamical Complexity Analysis for Biological Systems

Lang Zhang and Fuyuan Xiao*

Chongqing University, Chongqing, China

The 10th International Conference on Information Systems and Computing Technology

(ISCT)

Information Processing and Intelligent Systems Lab

Outline

⁰¹ Background & Motivation

02 **Preliminaries**

- **O3** The Proposed Method
- **O4** Simulation Experiments

Cardiac inter-beat signals

• Recent works for uncertain information management:

Process the time series data points whether they are on the boundaries of time slice

• Dempster-Shafer evidence theory

Definition 1 (Framework of discernment).

Let Θ be a set that consists of r mutually exclusive and collectively exhaustive events,

$$\Theta = \{e_1, e_2, \dots, e_i, \dots, e_r\}$$

which indicates the framework of discernment. The power set 2^{Θ} is used to describe uncertainty which can be defined as follows:

$$2^{\Theta} = \{\emptyset, \{e_1\}, \dots, \{e_r\}, \{e_1, e_2\}, \dots, \{e_1, e_2, \dots, e_h\}, \dots, \Theta\}$$

where \emptyset indicates the empty set.

Definition 2 (Mass function).

Based on the frame of discernment Θ , *m* as a mass function, also known as BPA, is a mapping from 2^{Θ} to [0,1] which is defined as:

$$m: 2^{\Theta} \rightarrow [0,1].$$

Because events must arise from propositions in the framework of discernment and empty set is not the cause of the events, it abides the rule of

$$\sum_{E \in 2^{\Theta}} m(E) = 1 \text{ and } m(\emptyset) = 0.$$

If m(E) > 0 E is a focal element.

• Belief KL divergence measure

Let m_1 and m_2 be two BPAs, the belief KL divergence between m_1 and m_2 can be defined as:

$$D_{KL}(m_1, m_2) = \sum_{i} \frac{1}{2^{|A_i|} - 1} m_1(A_i) \log\left(\frac{m_1(A_i)}{m_2(A_i)}\right)$$

• Make it be symmetric

$$Div(m_1, m_2) = Div(m_2, m_1)$$
$$= \frac{D_{KL}(m_1, m_2) + D_{KL}(m_2, m_1)}{2}$$

Figure 1. Flowchart of the BKLDC algorithm for biological systems.

• Two lists of consecutive non-overlapping time windows

$$w_{Xj}^{(\eta)} = \left\{ t_{(j-1)\eta+1}, \dots, t_{(j-1)\eta+\eta} \right\}$$
$$w_{Yj}^{(\eta)} = \left\{ t_{(j-1)\eta+1}, \dots, t_{(j-1)\eta+\delta} \right\}$$

• Focal element of BPA

$$m_{ij}: \begin{cases} m_{ij}^{(\eta)}(\{M_s\}) = \frac{q_{ij}}{|w_{ij}|}, & \text{if } \gamma \text{ falls on the boundary } s, \\ m_{ij}^{(\eta)}(\{M_s, M_{s+1}\}) = \frac{p_{ij}}{|w_{ij}|}, & \text{otherwise,} \end{cases}$$

• D_j in each corresponding window

$$D_{j}^{(\eta)} = Div(m_{Xj}, m_{Yj})$$

$$= \frac{1}{2} \cdot \sum_{s=1}^{k} \frac{m_{Xj}\left(\{M_{s}, M_{s+1}\}\right)}{2|\{M_{s}, M_{s+1}\}| - 1} \log\left(\frac{m_{Xj}\left(\{M_{s}, M_{s+1}\}\right)}{m_{Yj}\left(\{M_{s}, M_{s+1}\}\right)}\right)$$

$$+ \frac{1}{2} \cdot \sum_{s=1}^{k} \frac{m_{Yj}\left(\{M_{s}, M_{s+1}\}\right)}{2|\{M_{s}, M_{s+1}\}| - 1} \log\left(\frac{m_{Yj}\left(\{M_{s}, M_{s+1}\}\right)}{m_{Xj}\left(\{M_{s}, M_{s+1}\}\right)}\right)$$

$$= \frac{1}{2} \cdot \sum_{s=1}^{k} \left(\frac{p_{Xj}}{3 \cdot |w_{Xj}|} - \frac{p_{Yj}}{3 \cdot |w_{Yj}|}\right) \log\frac{p_{Xj} \cdot |w_{Yj}|}{p_{Yj} \cdot |w_{Xj}|}.$$

8

• **Property 1.** When all the data fall on the boundaries

$$D_{j}^{(\eta)} = Div(m_{Xj}, m_{Yj})$$
$$= \frac{1}{2} \cdot \sum_{s=1}^{k} \left(\frac{q_{Xj}}{|w_{Xj}|} - \frac{q_{Yj}}{|w_{Yj}|} \right) \log \frac{q_{Xj} \cdot |w_{Yj}|}{q_{Yj} \cdot |w_{Xj}|}.$$

• **Property 2.** $D_j^{(\eta)}$ is symmetric as:

$$D_j^{(\eta)} = Div(m_{Xj}, m_{Yj}) = Div(m_{Yj}, m_{Xj})$$

• **Property 3.** When $m_{Xj} = m_{Yj}$, the $D_j^{(\eta)}$ is regarded as:

$$D_j^{(\eta)} = 0.$$

• The average divergence represents the complexity of a biological system time series λ

$$\lambda = \frac{\sum_{i=1}^{N/\eta} D_j^{(\eta)}}{N/\eta}.$$

The Proposed Method

The pseudocode of dynamical complexity analysis algorithm for biological

systems based on KL divergence is shown in Algorithm 1.

Algorithm 1: Complexity analysis algorithm for	
biological systems based on belief KL divergence	
Input: Biological systems time series	
$\mathcal{H} = \{t_1, \dots, t_N\};$	
Output: Complexity result λ	
1 Split the time series $\{x_i\}$ into two types of windows	
$\left\{w_{Xj}^{(\eta)}\right\}$ and $\left\{w_{Yj}^{(\eta)}\right\}$;	
2 Determine the lower and upper sides of time interval	Facture extraction
$\{x_{min}, x_{max}\};$	reature extraction
3 Divided each time window into k slices;	
4 Count the number of data points on or between	
boundaries;	
5 for $i=1; i \leq N/\eta$ do	
6 Figure out the BPAs m_{1i} and m_{2i} of each time	
window by using Eq. (9);	
7 end	
s for $i=1; i \leq N/\eta$ do	
9 Calculate the divergence $D_i^{(\eta)}$ in each	Complexity measurement
corresponding window by using Eq. (10);	complexity measurement
10 end	
11 Calculate the complexity of biological systems time	
series λ by using Eq. (14);	
12 return λ .	

10

Cardiac inter-beat time series

In this study, cardiac inter-beat interval time series is applied to demonstrate the feasibility of BKLDC algorithm for biological systems complexity analysis. The data is selected from the databases on PhysioNet as follows:

- BIDMC Congestive Heart Failure Database (CHF);
- MIT-BIH Normal Sinus Rhythm Database (Healthy);
- Long Term AF Database (AF).

Data processing

- Each subject is truncated into 5 sets inter-beat interval time series by utilizing the first 500 data points from 10,000 data points.
- Hence, there are 240 sets inter-beat interval time series. Specifically, 75, 90 and 75 records are from CHF Healthy and AF, respectively.
- The data points $\{x_i\}$ are ranked and split into 1000 segments. To release the influence of noise and detection error, the 1*st* and 999*th* 1000-quantiles of the ranked segments are regarded as $x_{min} = 0.3$ and $x_{max} = 1.6$

• Table 1 shows the 14 divergence values for each time

window of data sets, respectively.

Subject	Win_1	Win_2	Win_3	Win_4	Win_5	Win_6	Win_7	Win_8	Win_9	Win_{10}	Win_{11}	Win_{12}	Win_{13}	Win_{14}
CHF	0.0138	0.0303	0.0299	0.0074	0.0377	0.0135	0.0000	0.0211	0.0048	0.0000	0.0000	0.0231	0.0068	0.0116
Healthy	0.0693	0.0377	0.0530	0.0231	0.0462	0.0578	0.0578	0.0135	0.0693	0.0693	0.0395	0.0578	0.0213	0.0530
AF	0.0279	0.0231	0.0462	0.0462	0.0048	0.0462	0.0231	0.0395	0.0351	0.0279	0.0414	0.0279	0.0578	0.0163

• Fig. 3 shows the three original time series and divergence series, respectively.

Figure 4. The complexity value in 240 sets cardiac inter-beat interval time series.

• Sensitivity of pathological subjects and specificity of healthy subjects are defined as follows:

Specificity:
$$V_{sp} = \frac{T_H}{T_H + F_H}$$
,
Sensitivity: $V_{se} = \frac{T_P}{T_P + F_P}$,
Accuracy: $V_{ac} = \frac{T_H + T_P}{T_H + F_H + T_P + F_P}$

where T_H and F_H represent the amount of healthy subjects that classified correctly and falsely, respectively. Besides, T_P and F_P represent the amount of pathology subjects that classified correctly and falsely.

Table II THE EVALUATION INDEX VALUE IN APPLICATION BASED ON BKLDC.

	N = 140	N = 300	N = 500
V_{se} in CHF	0.7013	0.7267	0.7133
V_{se} in AF	0.8333	0.7933	0.8215
V_{sp} in Healthy	0.8230	0.8124	0.8248
Accuracy	0.8044	0.8189	0.8150

• The patter classification accuracy based on different methods.

				80.0%	N = 140 N = 300 N = 500		
	N = 140	N = 300	N = 500	curacy			
K-means	0.3822	0.3711	0.4078	tion Ac			
Spectral clustering	0.4044	0.4100	0.4056	40.0% -			
MSE	0.6738	0.7024	0.7248	20.0%			
BKLDC	0.8044	0.8189	0.8150				
				0.0%	K-means	SpectralClustering	MSE

Figure 5. The pattern classification accuracy in cardiac inter-beat interval time series.

Conclusion

Contribution:

- Biological systems time series data is converted into mass function by using the D-S evidence theory, where feature of data can be extracted.
- The proposed BKLDC algorithm proposes an effective way to figure out the complexity of time series data in biological systems by generating BPAs and measure the average divergence of them.
- An application for pathological states analysis in cardiac inter-beat interval time series is carried out to illustrate the effectiveness of BKLDC algorithm.

Future work:

• The time complexity of the BKLDC algorithm for biological systems should be addressed to adapt to real-time data flexibly.

THANK YOU VERY MUCH!

Any questions and comments are welcome!

Email address: zhanglang_cqu@163.com