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Abstract—Time series data contains the amount of informa-
tion to reflect the development process and state of a subject.
Especially, the complexity is a valuable factor to illustrate the
feature of the time series. However, it is still an open issue to
measure the complexity of sophisticated time series due to its
uncertainty. In this study, based on the belief Rényi divergence,
a novel time series complexity measurement algorithm, called
belief Rényi divergence of divergence (BRéDOD), is proposed.
Specifically, the BRéDOD algorithm takes the boundaries of
time series value into account. What is more, according to
the Dempster-Shafer (D-S) evidence theory, the time series
is converted to the basic probability assignments (BPAs) and
it measures the divergence of a divergence sequence. Then,
the secondary divergence of the time series is figured out to
represent the complexity of the time series. In addition, the
BRéDOD algorithm is applied to sets of cardiac inter-beat
interval time series, which shows the superiority of the proposed
method over classical machine learning methods and recent
well-known works.

Index Terms—D-S evidence theory, uncertainty, belief Rényi
divergence, belief divergence of divergence, complexity, time
series analysis, classification

I. Introduction

COMPLEXITY measurement is a valuable approach
to explore the characteristic of information in time

series data [1–4]. Specifically, it reflects the development
or states of a subject [5, 6]. However, measuring the com-
plexity of time series has become a critical challenge [7, 8].
With the advent of Artificial Intelligence, deep learning
methods have been heavily used for feature extraction.
It has also been proved that they extract complexity
features of time-series data, based on a large number of
neurons [9]. While deep learning approaches can yield
more sophisticated complexity measures, a significant
limitation is their reduced interpretability [10, 11]. The
practical value of data features is compromised if they
cannot be interpreted meaningfully.

Numerous studies suggest a direct correlation between
the amount of information and its complexity. As the
information increases, time series often becomes more
uncertain, exhibiting higher levels of entropy [12–15].
By this observation, the complexity of time series and
dynamics of the system could be calculated by utilizing
the uncertainty of information [16–18]. This means that
it is necessary to model the uncertainty of time series in
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complex environments to explain its characteristics [19].
Nevertheless, without a fixed criterion, it is still an open
issue to figure out the uncertainty of time series. Recently,
several well-known works have been proposed to deal with
uncertainty problem in various fields, such as decision
making [20–23], fault diagnose [24], clustering [25, 26],
reliability analysis [27, 28], pattern classification [29, 30],
and so on [31–34].

Here, D-S evidence theory provides an effective way
to address the uncertainty problems in an interpretable
way [35–37]. It is extended in different aspects of random
generalized D-S structure [38], permutation set [39, 40]
and quantum evidence theory [41, 42], and widely used
in output control [43], conflict management [44], evidence
reasoning [45, 46], and so on [47–49]. It is noticed that
D-S evidence theory offers a robust and framework for
quantifying the uncertainty inherent in a time series to
enable the assessment of its complexity [50, 51]. Specifi-
cally, it provides an efficacious approach for representing
segments of time series as combinations of multiple subsets
and singleton sets through the construction of BPAs.
This methodology facilitates the extraction of segmental
features of time series. Furthermore, it presents an inter-
pretable method for measuring the complexity of time
series, since BPAs illustrate the feature of uncertainty
with assigning probabilities to different categories [52].
So, the interval characterization of time series data can
be expressed based on D-S evidence theory reasonably.

Next, it is necessary to calculate the discrepancy of
BPAs as it contributes to complexity measurement [53].
Recently, Xiao et al. [54] proposed generalized evidential
divergences to measure the discrepancy between BPAs.
Huang et al. [55] introduce belief f -divergence to improve
the performance of complexity evaluation based on BPAs
measurement. Moreover, belief Rényi divergence can quan-
tifies the differences between BPAs for time series anal-
ysis [56, 57]. Hence, divergence shows well-performance
qualities for discrepancy measurement [58–62]. Studying
several belief divergence methods, belief Rényi divergence
has outstanding properties to measure the discrepancy of
BPAs. Specifically, the BPA degenerates to a probability
distribution with all hypotheses containing one event, and
the belief Rényi divergence correspondingly degenerates
to a traditional Rényi divergence. Moreover, based on the
parameter setting of belief Rényi divergence, it is related
to the Kullback-Leibler divergence, Hellinger distance
or χ2 divergence, which leads to a more flexible belief
divergence. However, there is still a limitation. For fussy
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time series, it is hard to extract the complexity features
by using divergence measurement only once.

To address the limitation above, a novel belief di-
vergence of divergence algorithm, called BRéDOD is
proposed. At first, a divergence sequence of time series
can be figured out according to belief Rényi divergence.
Next, the complexity of the time series can be calculated
by measuring the discrepancy of BPAs that are produced
by the divergence sequence. Based on belief divergence of
divergence, the deeper feature of time series can be ob-
tained. Furthermore, the BRéDOD algorithm is applied to
cardiac inter-beat interval time series, which demonstrates
the effectiveness in handling a real-world time series issue
in complexity measurement, and a pattern classification
problem is addressed.

Main contributions of this paper are listed as follows:
1) Time series data is converted to mass function

by means of D-S evidence theory, which provides
an interpretable approach to carry out time series
feature extraction.

2) The complexity of the time series is effectively
figured out according to the proposed BRéDOD
algorithm by measuring the belief Rényi divergence
of divergence.

3) An application in cardiac inter-beat interval time
series classification is carried out with BRéDOD
algorithm, which shows higher classification accu-
racy than classical machine learning methods and
several well-known works. Hence, the superiority of
the proposed method has been discussed.

The organization of this study is shown as follows.
Section II introduces the fundamental concepts of this
study. In Section III, a novel belief Rényi divergence
of divergence algorithm for complexity measure of time
series is proposed and a specific example is put forward.
In Section IV, the processing of complexity measurement
is demonstrated based on cardiac inter-beat interval time
series, and an application of pattern classification is carried
out to illustrate the out-performance of the BRéDOD
algorithm. Section V makes a conclusion of this study.

II. Preliminaries
This section briefly presents the basic concepts, includ-

ing D-S evidence theory and belief Rényi divergence.

A. D-S Evidence Theory
D-S evidence theory is generalized by typical probabil-

ity theory, which deals with uncertainty problems more
effectively and flexibly.

Definition 1 (Framework of discernment).
Let Θ be the discernment with mutually exclusive events

which can be defined as:
Θ = {e1, e2, . . . , en} . (1)

Then, its power set 2Θ can be defined as follows:
2Θ = {∅, . . . , {en} , . . . , {e1, e2} , . . . ,Θ} , (2)

where ∅ indicates the empty set.

Definition 2 (Mass function).
With discernment Θ, a mass function m can be defined

as:
m : 2Θ → [0, 1]. (3)

It abides the rule of∑
E∈2Θ

m(E) = 1 and m(∅) = 0. (4)

Here, E is a focal element with m(E) > 0. Specifically,
the information value of mass function contributes to
uncertainty measurement [63, 64].

Definition 3 (Dempster’s rule of combination).
Let m1 and m2 be two BPAs. The rule of Dempster’s

combination is describe as:

m(A) =


1

1− k

∑
P∩Q=A

m1(P )m2(Q), A ̸= ∅,

0, A = ∅,

(5)

and
k =

∑
P∩Q=∅

m1(P )m2(Q), (6)

where P and Q are focal elements and k is regarded as
a conflict coefficient.

B. Belief Entropy and Divergence
Definition 4 (Deng entropy).

Deng entropy is a new belief entropy in processing the
measurement of conflict between evidence [37]. The Deng
entropy can be calculated as:

ED = −
∑
i

m(Ei) log
m(Ei)

2|Ei| − 1
, (7)

where m(Ei) is a BPA, and | · | represents the cardinality
of m(Ei).

Definition 5 (Belief Rényi divergence).
Let m1 and m2 be two BPAs. The belief Rényi diver-

gence between two mass function can be defined as [57]:

BRDα(m1||m2) =
1

α− 1
ln

2Θ∑
i=1

m1(Ei)
αm2(Ei)

1−α

2|Ei| − 1
, (8)

where α is the parameter with α ∈ (0, 1) ∪ (1,+∞) and
|Ei| represents the cardinality of Ei.

III. Complexity Measurement Based on Belief Rényi
Divergence of Divergence

The time series complexity analysis algorithm,
BRéDOD algorithm is divided into two components. The
first component figures out the divergence sequence of two
types of time series, and the second component calculates
the divergence of divergence sequence. The flowchart of
BRéDOD algorithm for time series processing is described
as Fig. 1.

A. Measure the Divergence of Time Series
In the first component, the time series is described

as S = {x1, . . . , xi, . . . , xN} with length N . Two types
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Fig. 1. Flowchart of the BRéDOD algorithm for time series complexity.

of consecutive and non-overlapping time windows are
obtained by dividing the time series as type A

{
w

(τ)
Aj

}
and

type B
{
w

(τ)
Bj

}
. Here, w

(τ)
Aj =

{
x(j−1)τ+1, . . . , x(j−1)τ+τ

}
is of length τ , where j is the window index which
ranges from 1 to N/τ . It can be regarded that type
B is the truncation of type A in each window as
w

(τ)
Bj =

{
x(j−1)τ+1, . . . , x(j−1)τ+υ

}
, where υ < τ . The

value selecting of υ and τ are discussed in Section IV.
The time interval of each window ranges from xmin

to xmax where xmin and xmax indicate the lower and
upper boundaries of time series S, respectively. The time
interval is equally split into k slices. Each slice contains
two boundaries (e.g., Bs and Bs+1 of the sth slice), which
represents the specific state. If data points are in the same
slice, then it can be considered that they are in the same
states.

Definition 6 (Belief divergence sequence).

As depicted in Fig. 1, each time window is concep-
tualized as a discernment framework, where each slice
comprises two focal elements: one signifies the specific
state, while the other denotes the state of uncertainty.

Let the total number of data points over wij between Bs

and Bs+1 be pij . Specifically, let data points γ of length
qij fall on the border Bs coincidentally. The BPAs based
on each time window can be defined as:

mij :


m

(τ)
ij ({Bs}) =

qij

|wij |
, if γ falls on the boundary s,

m
(τ)
ij ({Bs, Bs+1}) =

pij

|wij |
, otherwise,

(9)

where i ∈ {A,B}. Considering that all points are in
the interval, the divergence Div

(τ)
j in each corresponding

window is figured out based on Eq. (8):

Div
(τ)
j = BRDα(mAj ||mBj)

=
1

α− 1
ln

k∑
i=1

(
mAj (Ei)

α mBj (Ei)
1−α

2|Ei| − 1

)
,

(10)

where Ei represents {Bi} or {Bi, Bi+1}. Then a belief
Rényi divergence sequence

{
Div

(τ)
j

}
of original time series

is constructed.
The belief Rényi divergence is a generalized divergence.

Choosing different α, the equation will degenerate to
special divergence expression, including Hellinger distance,
Kullback-Leibler divergence and χ2 divergence [57]:

• When α → ∞, Div
(τ)
j degenerates the difference value

between the logarithms of one focal element of BPA.
• When α = 1

2 , Div
(τ)
j has the property of symmetry.

Specifically, Div
(τ)
j degenerates an equation related

to Hellinger distance with ∀|Ei| = 1.
• When α → 1, Div

(τ)
j degenerates an equation of

Kullback-Leibler divergence with ∀|Ei| = 1.
• When α = 2, Div

(τ)
j degenerates an equation related

to the χ2 divergence with ∀|Ei| = 1.
• When α → 0, Div

(τ)
j = 0 with ∀|Ei| = 1.

Utilizing different α, divergence values will be obtained
during calculation, which leads to a more flexible com-
plexity measurement algorithm. The following proof shows
that these properties still hold true in Eq. (10).
• Property 1. When all the data points fall on the
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boundaries of time window, the Div
(τ)
j degenerates to:

Div
(τ)
j =

1

α− 1
ln

k∑
i=1

(
qAj

|wAj |

)α

·
(

qBj

|wBj |

)1−α

. (11)

Proof. Given two BPAs mAj and mBj . According to
Eq. (9), each focal element in BPAs is a singleton.

Div
(τ)
j = BRDα(mAj ||mBj)

=
1

α− 1
ln

k∑
s=1

mAj ({Bs})α mBj ({Bs})1−α

2|{Bs}| − 1

=
1

α− 1
ln

k∑
s=1

(
qAj

|wAj |

)α

·
(

qBj

|wBj |

)1−α

.

■

• Property 2. When α → ∞, the Div
(τ)
j is regarded as:

Div
(τ)
j = ln

mAj(Eµ)

mBj(Eµ)
, (12)

where µ = arg max
1≤i≤k

{
mBj(Ei)

2|Ei|−1

(
mAj(Ei)
mBj(Ei)

)α}
.

Proof. m = maxi

{
mBj(Ei)

2|Ei|−1
·
(

mAj(Ei)
mBj(Ei)

)α}
and µ =

argmax1⩽i⩽k

{
mBj(Ei)

2|Ei|−1
·
(

mAj(Ei)
mBj(Ei)

)α}
.

1

α− 1
lnm ≤ Div

(τ)
j ≤

1

α− 1
(lnm+ lnn)

That is:

Div
(τ)
j ⩾ lim

α→∞

1

α− 1
lnmax

i

{
mBj(Ei)

2|Ei| − 1
·
(
mAj(Ei)

mBj(Ei)

)α}
= lim

α→∞

1

α− 1
ln

mBj(Eµ)

2|Eµ| − 1
+ lim

α→∞

1

α− 1
ln

(
mAj (Eµ)

mBj (Eµ)

)α

= 0 + lim
α→∞

α

α− 1
ln

mAj (Eµ)

m2 (Eµ)

= ln
mAj (Eµ)

mBj (Eµ)
.

Similarly,
Div

(τ)
j

⩽ lim
α→∞

1

α− 1

(
lnn+ lnmax

i

{
mBj(Ei)

2|Ei| − 1
·
(
mAj(Ei)

mBj(Ei)

)α})
= lim

α→∞

lnn

α− 1
+ lim

α→∞

1

α− 1
ln

mBj(Eµ)

2|Aµ| − 1
+ lim

α→∞

α

α− 1
ln

mAj(Eµ)

mBj(Eµ)

= 0 + 0 + lim
α→∞

α

α− 1
ln

mAj (Eµ)

mBj (Eµ)

= ln
mAj (Eµ)

mBj (Eµ)
.

Therefore, ln
mAj(Eµ)
mBj(Eµ)

⩽ Div
(τ)
j ⩽ ln

mAj(Eµ)
mBj(Eµ)

. So,
Div

(τ)
j = ln

mAj(Aµ)
mBj(Aµ)

. ■

• Property 3. When α = 1
2 , the Div

(τ)
j follows the rule:

Div
(τ)
j = BRDα(mAj ||mBj) = BRDα(mBj ||mAj), (13)

which means that it has the property of symmetry.
Proof. Given two BPAs mAj and mBj , according to
Eq. (10):

BRDα(mAj ||mBj) = −2 ln

k∑
i=1

(√
mAj (Ei)mBj (Ei)

2|Ei| − 1

)
.

BRDα(mBj ||mAj) = −2 ln

k∑
i=1

(√
mBj (Ei)mAj (Ei)

2|Ei| − 1

)
.

Therefore,
BRDα(mAj ||mBj) = BRDα(mBj ||mAj).

■
Specifically, when all the data points fall on the bound-
aries, the belief Rényi divergence is related to the Hellinger
distance. Here, Div

(τ)
j is regarded as:

Div
(τ)
j = −2 ln

(
2−Hel2(mAj ,mBj)

2

)
. (14)

Proof. Given two BPAs mAj and mBj . According to
Eq. (9), each focal element in BPAs is a singleton.

Div
(τ)
j

= −2 ln
k∑

i=1

√
mAj (Ei)mBj (Ei)

2|Ei| − 1

= −2 ln

k∑
i=1

mAj (Ei) +mBj (Ei)−
(
mAj (Ei)

1
2 −mBj (Ei)

1
2

)2
2

= −2 ln

(
2−Hel2

(
mAj ,mBj

)
2

)
,

where

Hel2
(
mAj ,mBj

)
=

k∑
i=1

(
mAj (Ei)

1
2 −mBj (Ei)

1
2

)2
.

■

• Property 4. When α → 1 and all the data points fall
on the boundaries, the belief Rényi divergence degenerates
to a Kullback-Leibler divergence. Here, Div

(τ)
j is regarded

as:

Div
(τ)
j = DKL(mAj ||mBj). (15)

Proof. Given two BPAs mAj and mBj . According to
Eq. (9), each focal element in BPAs is a singleton.

Div
(τ)
j = lim

α→1

∂
∂α

[
ln
∑k

i=1 mAj (Ei)
α mBj (Ei)

1−α
]

∂
∂α

(α− 1)

=

k∑
i=1

mAj(Ei)(lnmAj(Ei)− lnmBj(Ei))

=
n∑

i=1

mAj(Ei) ln
mAj(Ei)

mBj(Ei)

= DKL(mAj ||mBj).

■

• Property 5. When α = 2 and all the data points fall on
the boundaries, the belief Rényi divergence is the function
of χ2 divergence. The Div

(τ)
j can be expressed as:

Div
(τ)
j = ln

(
1 + χ2(mAj ,mBj)

)
. (16)

Proof. Given two BPAs mAj and mBj . According to
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Eq. (9), each focal element in BPAs is a singleton.

Div
(τ)
j = ln

n∑
i=1

mAj(Ei)
2

mBj(Ei)
·

1

2|Ei| − 1

= ln

n∑
i=1

(
2mAj(Ei)−mBj(Ei) +

(
mAj(Ei)−mBj(Ei)

)2
mBj(Ei)

)
= ln

(
1 + χ2(mAj ,mBj)

)
.

■
• Property 6. When α → 0, and all data points fall on

the boundaries, the Div
(τ)
j is regarded as:

Div
(τ)
j = 0. (17)

Proof. Given two BPAs mAj and mBj . According to
Eq. (9), each focal element in BPAs is a singleton.

Div
(τ)
j = − ln

n∑
i=1

mBj(Ei)

2|Ei| − 1

= − ln
n∑

i=1

mBj(Ai)

= 0.

■

B. Measure the Complexity of Time Series
In the second component, belief Rényi divergence is

also used to measure the complexity of time series by
calculating the divergence of sequence

{
Div

(τ)
j

}
. Here,

the divergence sequence is processed as two parts. The
first part is the first half of the sequence, and the second
part is the entire sequence.

Definition 7 (Belief divergence of divergence).

As illustrated in Fig. 1, the first half segment of the state
list, and the whole state list serves as distinct discernment
frameworks. Specifically, each individual state is construed
as a focal element within these frameworks.

Let r be the quantity in the lth state of the sequence
and there are L states. So, the BPAs based on the belief
Rényi divergence is described as follows:

mS1
({Bl}) =

2r

N/τ
,

mS2
({Bl}) =

r

N/τ
,

(18)

where mS1
and mS2

represent the BPAs of the first part
and second part of sequence, separately. In this case, the
complexity of the whole time series Φ(τ) can be obtained
by calculating the divergence between mS1 and mS2 with
belief Rényi divergence as follows:

Φ(τ) = BRDα(mS1
||mS2

)

=
1

α− 1
ln

L∑
l=1

mS1
({Bl})α mS2

({Bl})1−α

2|{Bs}| − 1

=
1

α− 1
ln

L∑
l=1

(
2r

N/τ

)α

·
(

r

N/τ

)1−α

.

(19)

Note that each element in sequence is at boundary which
means that each focal element in BPAs is a singleton.

Algorithm 1: Complexity analysis algorithm for
time series based on Rényi divergence
Input: Time series S = {x1, . . . , xN};
Output: Complexity result Φ(τ);

1 Split the time series S into two types of time
windows

{
w

(τ)
Aj

}
and

{
w

(τ)
Bj

}
;

2 Determine the lower and upper sides of time
interval {xmin, xmax};

3 Divided each time window into k slices;
4 Count the number of data points on or between

boundaries;
5 for i=1;i≤ N/τ do
6 Figure out the BPAs mAi and mBi of each

time window by using the Eq. (9);
7 end
8 for i=1;i≤ N/τ do
9 Calculate the divergence Div

(τ)
j in each

corresponding window by using Eq. (10);
10 end
11 Generate the BPAs mS1 and mS2 of the divergence

sequence with Eq. (18);
12 Calculate the complexity of time series Φ(τ) by

using Eq. (19);
13 return Φ(τ).

Here, Φ(τ) is to be computed under different parameter α
of belief Rényi divergence and time scales τ .
• Property 7. When α → ∞, based on Eq. (12), the

Φ(τ) is regarded as:

Φ(τ) = ln
mS1

(Eµ)

mS2
(Eµ)

, (20)

where µ = arg max
1≤i≤n

{
mS1

(Ei)

2|Ei|−1

(
mS1

(Ei)

mS2
(Ei)

)α}
.

• Property 8. When α = 1
2 , based on Eqs. (13)-(14),

the Φ(τ) follows the rule:
Φ(τ) = BRDα(mS1

||mS2
) = BRDα(mS2

||mS1
). (21)

Φ(τ) = −2 ln

(
2−Hel2(mS1

,mS2
)

2

)
. (22)

• Property 9. When α → 1, based on Eq. (15), Φ(τ) is
regarded as:

Φ(τ) = DKL(mS1
||mS2

)

=
n∑

i=1

mS1
(Ei) ln

mS1
(Ei)

mS2
(Ei)

.
(23)

• Property 10. When α = 2, based on Eq. (16), the Φ(τ)

can be expressed as:
Φ(τ) = ln

(
1 + χ2(mS1

,mS2
)
)

= ln

(
1 +

n∑
i=1

(
mS1

(Ei)−mS2
(Ei)

)2
mS2

(Ei)

)
.

(24)

• Property 11. When α → 0, based on Eq. (17), the
Φ(τ) is regarded as:

Φ(τ) = 0. (25)

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3369719

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 23,2024 at 15:28:53 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ∼, NO. ∼, JUNE 2023 6

The pseudocode of time series complexity analysis
algorithm based on belief Rényi divergence is shown in
Algorithm 1.

IV. Application in Cardiac Inter-beat Interval Time
Series Classification

In this section, an implementation of BRéDOD algo-
rithm for a practical classification problem is carried out
based on cardiac inter-beat interval time series data.

A. Data Description and Processing
In this study, the cardiac inter-beat interval time series

are taken into consideration, which comes from PhysioNet
(https://physionet.org). Three different databases of long-
term ECG (Electrocardiography) with 20-24 hours records
are selected as follows:

1) BIDMC Congestive Heart Failure Database (CHF;)
2) MIT-BIH Normal Sinus Rhythm Database

(Healthy);
3) Long Term AF Database (AF).
The databases contain 15, 18, and 84 subjects, respec-

tively. As for CHF and Healthy databases, each subject
is truncated into five-time series by choosing the first 500
data points from every 10,000 data points. As for AF
databases, time series of onset stages are extracted ac-
cording to the annotation in PhysioNet. Then, 75 records
are adopted whose lengths exceed 500 points. Hence, 240
cardiac inter-beat interval time series are chosen from 117
subjects, where 75, 90, and 75 are from CHF, Healthy,
and AF, respectively.

Next, several parameters are set by processing the
original data. First, all the data points {xi} are ranked

and divided into 1,000 segments. In order to avoid the
noise influence and detection error, the 1st and 999th
of 1,000-quantiles of the ranked segments are taken into
consideration as xmin = 0.3 and xmax = 1.6. This interval
is divided equally into 55 parts with k = 55. Second, to
briefly demonstrate the performance of BRéDOD model,
140 data points in each time series are chosen with
N = 140, and the time window scale are considered
as τ = 10 and υ = 5. So, there are 14-time windows
(Nτ ) in total for each time series. At the same time, the
parameter α in belief Rényi divergence varies to show
the performance adequately. In addition, the influence of
parameters will be discussed in the following sections.
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Fig. 2. The original time series with 140 data points of specific
instances. (a) Original time series of CHF subject. (b) Original time
series of Healthy subject. (c) Original time series of AF subject.

B. Implementation of the BRéDOD Algorithm
Three representative time series are carried out to show

the process of BRéDOD algorithm, and final complexity
values are figured out.

In the beginning, the original time series of CHF,
Healthy, and AF subjects are shown in Fig. 2 based on the
annotations. Note that each subject has different heart-
beat rate profiles. Compared with Healthy subjects, the

TABLE I
The divergence sequence of CHF, Healthy and AF in each time window.

α = 0.1 α = 0.5 α → 1 α = 2 α = 10 α → +∞

CHF Healthy AF CHF Healthy AF CHF Healthy AF CHF Healthy AF CHF Healthy AF CHF Healthy AF

Win1 1.329 1.580 1.736 2.318 2.569 2.731 109.999 110.248 110.415 -0.916 -0.680 -0.510 0.393 0.471 0.546 0.666 0.673 0.680
Win2 1.221 1.733 1.736 2.197 2.713 2.731 109.861 110.382 110.415 -1.099 -0.568 -0.511 -0.122 0.481 0.546 -0.011 0.673 0.680
Win3 1.225 1.333 1.455 2.218 2.340 2.478 109.907 110.045 110.195 -0.990 -0.825 -0.671 0.3930 0.469 0.514 0.666 0.673 0.677
Win4 1.326 1.224 1.914 2.303 2.217 2.890 109.967 109.905 110.554 -0.993 -0.993 -0.406 -0.017 0.393 0.571 0.094 0.666 0.682
Win5 1.221 1.223 1.914 2.197 2.207 2.890 109.861 109.881 110.554 -1.099 -1.059 -0.406 -0.122 0.005 0.571 -0.011 0.166 0.682
Win6 1.229 1.243 1.914 2.238 2.303 2.890 109.942 110.052 110.554 -0.945 -0.791 -0.406 0.227 0.323 0.571 0.389 0.457 0.682
Win7 1.224 1.221 1.914 2.217 2.197 2.890 109.905 109.861 110.554 -0.993 -1.099 -0.406 0.393 -0.122 0.571 0.666 -0.011 0.682
Win8 1.231 1.357 1.914 2.247 2.449 2.890 109.952 110.230 110.554 -0.945 -0.580 -0.406 0.141 0.546 0.571 0.274 0.680 0.682
Win9 1.223 1.446 1.736 2.208 2.431 2.731 109.884 110.106 110.415 -1.052 -0.825 -0.511 0.067 0.395 0.546 0.267 0.666 0.680
Win10 1.243 1.732 1.914 2.303 2.710 2.890 110.052 110.376 110.554 -0.791 -0.580 -0.406 0.323 0.440 0.571 0.457 0.666 0.682
Win11 1.326 1.221 1.736 2.303 2.197 2.731 109.968 109.861 110.415 -0.990 -1.099 -0.511 -0.005 -0.122 0.546 0.120 -0.011 0.680
Win12 1.230 1.736 1.445 2.247 2.731 2.424 109.965 110.415 110.091 -0.876 -0.511 -0.862 0.469 0.546 0.143 0.673 0.680 0.274
Win13 1.224 2.163 1.581 2.217 3.337 2.572 109.905 132.869 110.253 -0.993 -0.629 -0.671 0.393 0.546 0.472 0.666 0.680 0.673
Win14 1.224 2.162 1.540 2.217 3.337 2.217 109.905 132.869 76.907 -0.993 -0.629 -0.069 0.393 0.546 0.609 0.666 0.680 0.685
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(a) CHF: α = 0.1.
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(b) CHF: α = 0.5.
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(c) CHF: α → 1.
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(d) CHF: α = 2.
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(e) CHF: α = 10.
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(f) CHF: α → ∞.
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(g) Healthy: α = 0.1.
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(h) Healthy: α = 0.5.
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(i) Healthy: α → 1.
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(j) Healthy: α = 2.
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(k) Healthy: α = 10.
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(l) Healthy: α → ∞.
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(m) AF: α = 0.1.
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(n) AF: α = 0.5.

0 2 4 6 8 1 0 1 2 1 4
8 0
9 0

1 0 0
1 1 0
1 2 0
1 3 0

Div
erg

enc
e

 A F

C o m p l e x i t y  =  0 . 2 6 3 2
� � →  1

T i m e  w i n d o w s
(o) AF: α → 1.
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(p) AF: α = 2.
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(q) AF: α = 10.
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(r) AF: α → ∞.
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(v) Complexity: α = 2.
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(x) Complexity: α → ∞.

Fig. 3. Demonstration of BRéDOD algorithm for time series on three representative subjects with varied α.

heart-beat interval of CHF subjects tends to be more
stable, while that of AF subjects varies considerably. In
this case, there will be disparate features in different
subjects by figuring out their complexity values.

According to Eqs. (9)-(17), Table I and Fig. (3a)-(3r)
show divergence sequences of three representative subjects
with varied α. After the first component of the BRéDOD
algorithm, note that each time series has its own feature
and the information of each time window is extracted.
The divergence value shows the inner discrepancy during
a period of time. Specifically, the divergence sequence of
CHF subjects is always flat while that of Healthy and
AF subjects rises and down. Moreover, the divergence of
Healthy sequence fluctuates at a lower divergence value
and that of AF subjects fluctuates at a higher divergence
value. When parameter α tends to 1 and infinite, it can be
found that there is a little discrepancy in the divergence
sequence of time series.

Then, based on Eqs. (18)-(25), the complexity value of
each time series is obtained after the second component of
the BRéDOD algorithm. It can be found that the proposed
method measures the complexity of inter-beat interval
time series reasonably because healthy people have more

sophisticated abilities to regulate control of the heart while
pathological groups are poor in regulation and control.
In this case, the complexity value of Healthy subjects is
supposed to be larger than that of CHF and AF subjects.
Specifically, when α fixes at 0.5, the secondary BPAs of
divergence sequence of CHF, Healthy, and AF subjects,
and complexity results are shown in Table II. According
to Figs. (3v)-(3x), the complexity value of the time series
tends to be the same with the increasing of α, which means
that it is hard to distinguish among different time series
when α is too large.

C. Classification in Cardiac Inter-beat Interval Time Se-
ries Based on BRéDOD

In this part, the classification accuracy in time series will
be figured out to demonstrate the effective and efficient
performance of the proposed method. When υ = 5,
τ = 10, and k = 55, the evaluation criteria, sensitivity of
pathological subjects, and specificity of healthy subjects,
can be defined as follows:
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TABLE II
The BPAs and complexity value of three instances.

Subject BPA Complexity

CHF

mS1 (B0) =
1
7
,mS1 (B1) =

2
7
,mS1 (B2) =

1
2
,mS1 (B3) =

1
7
,mS1 (B5) =

1
7
,mS1 (B6) =

1
7

0.3898mS2 (B0) =
1
14

,mS2 (B1) =
2
14

,mS2 (B2) =
1
14

,mS2 (B3) =
2
14

,mS2 (B5) =
1
14

mS2
(B6) =

3
14

,mS2
(B7) =

1
7
,mS2

(B8) =
1
14

,mS2
(B10) =

1
14

Healthy

mS1 (B0) =
1
7
,mS1 (B1) =

1
7
,mS1 (B2) =

1
2
,mS1 (B3) =

1
7
,mS1 (B4) =

1
7
,mS1 (B5) =

1
7
,mS1 (B6) =

1
7

0.5782mS2
(B0) =

1
14

,mS2
(B1) =

1
14

,mS2
(B2) =

1
14

,mS2
(B3) =

1
14

,mS2
(B4) =

1
14

,mS2
(B5) =

1
14

mS2
(B6) =

1
7
,mS2

(B7) =
1
14

,mS2
(B8) =

1
14

,mS2
(B9) =

1
14

,mS2
(B11) =

1
14

,mS2
(B12) =

1
7

AF
mS1

(B0) =
2
7
,mS1

(B2) =
1
7
,mS1

(B3) =
4
7 0.2520

mS2
(B0) =

2
7
,mS2

(B2) =
1
14

,mS2
(B3) =

6
14

,mS2
(B11) =

1
14

,mS2
(B12) =

1
14

,mS2
(B13) =

1
14

Specificity: Vsp =
TH

TH + FH
,

Sensitivity: Vse =
TP

TP + FP
,

Accuracy: Vac =
TH + TP

TH + FH + TP + FP
,

(26)

where TH and FH represent the amount of healthy sub-
jects that are classified correctly and falsely, respectively.
Besides, TP and FP represent the amount of pathology
subjects that are classified correctly and falsely. In par-
ticular, the BRéDOD algorithm places its emphasis on
feature extraction, rendering it highly adaptable to various
classification models. This inherent flexibility enhances
the algorithm’s compatibility with different approaches.

In this section, a classification method known as Spectral
clustering was employed to partition time series data-set
into three distinct categories. This classification is based
on the analysis of two-dimensional eigenvalues obtained
through BRéDOD, specifically considering the average
divergence sequence and complexity value.

In this case, 240 subjects of cardiac inter-beat interval
time series are taken into consideration to show the
performance of BRéDOD algorithm. Here, data points
N = 140, N = 300, and N = 500 with varied α are used
to demonstrate the effect of time series length.

According to Eq. (26), the specificity, sensitivity, and
accuracy in different lengths of time series are figured
out. Based on Table III, it can be found that different
lengths of time series will affect the result. There will
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1 . 2 1 . 4 1 . 6 1 . 8 2 . 0 2 . 20 . 0
0 . 2
0 . 4
0 . 6
0 . 8  C H F

 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(g) N = 300; α = 0.1.

2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8  C H F

 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(h) N = 300; α = 0.5.

1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8  C H F

 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(i) N = 300; α → 1.

- 1 . 2 - 1 . 0 - 0 . 8 - 0 . 6 - 0 . 40 . 0
0 . 2
0 . 4
0 . 6

 C H F
 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(j) N = 300; α = 2.

0 . 0 0 . 2 0 . 4 0 . 60 . 0
0 . 2
0 . 4
0 . 6
0 . 8

 C H F
 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(k) N = 300; α = 10.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8
0 . 0
0 . 2
0 . 4
0 . 6

 C H F
 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(l) N = 300; α → +∞.

1 . 2 1 . 4 1 . 6 1 . 8 2 . 00 . 0
0 . 2
0 . 4
0 . 6

 C H F
 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(m) N = 500; α = 0.1.

2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 . 00 . 0
0 . 2
0 . 4
0 . 6

 C H F
 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(n) N = 500; α = 0.5.

1 0 0 1 1 0 1 2 0 1 3 0 1 4 00 . 0
0 . 2
0 . 4
0 . 6

 C H F
 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(o) N = 500; α → 1.

- 1 . 2 - 1 . 0 - 0 . 8 - 0 . 6 - 0 . 40 . 0
0 . 2
0 . 4
0 . 6

C H F
 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(p) N = 500; α = 2.

0 . 0 0 . 2 0 . 4 0 . 6
0 . 0
0 . 2
0 . 4
0 . 6

 C H F
 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(q) N = 500; α = 10.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8
0 . 0
0 . 2
0 . 4
0 . 6

 C H F
 A F
 H e a l t h y

Co
mp

lex
ity

 va
lue

A v e r a g e  d i v e r g e n c e
(r) N = 500; α → +∞.

Fig. 4. The scatter plot with the relationship between belief Rényi divergence and complexity value in different time series length.
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TABLE III
The sensitivity, specificity and accuracy of the application based on BRéDOD.

α = 0.1 α = 0.5 α = 1 α = 2 α = 10 α → +∞

Data points N 140 300 500 140 300 500 140 300 500 140 300 500 140 300 500 140 300 500

Vse in CHF subjects .6800 .7467 .8133 .6933 .7467 .6533 .0000 .0000 .0000 .6667 .6667 .6400 .8400 .0800 .8267 .7600 .8000 .8133
Vse in AF subjects .8533 .8933 .9200 .8267 .9067 .9067 .0000 .0000 .0533 .8267 .9067 .9200 .0800 .7600 .4667 .2533 .3600 .4000
Vsp in Healthy subjects .8222 .9000 .8111 .8444 .9000 .9111 .9667 .9889 .9556 .7889 .8111 .8889 .8667 .9333 .9556 .8889 .9556 .9111
Accuracy .8044 .8600 .8455 .8056 .8956 .8789 .4933 .4944 .4911 .7811 .7989 .8411 .6800 .8567 .8045 .7144 .7778 .7722
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Fig. 5. Behavior of the BRéDOD model with the influence of time window scale υ and τ .

be a lack of performance in shorter time series, because
insufficient quantity may cause missing information, which
is intuitive that it’s easier to extract features with larger
data sets. As a result, the proposed BRéDOD method
is able to distinguish the healthy subjects and pathology
subjects at the same time with a longer length of time
series. Considering the influence of α, there will be the
highest classification accuracy with α = 0.5, while the
classification accuracy achieves the minimum with α tends
to 1. Fig. 4 shows the relationship between the average
value of divergence sequence and complexity value in
varied lengths of time series. Each picture tends to be an
inverted U shape, which means that the effectiveness of
classification is further demonstrated. However, it is hard
to distinguish the discrepancy among time series when α
tends to be 1 and infinite.

D. The Influence of Parameter Setting
In this section, several parameters in BRéDOD model

are taken into consideration to illustrate their influence.
Specifically, the length of the time series is fixed as 300.

1) Parameters υ and τ : Before considering the influ-
ence of υ and τ , k is fixed as 55.

As is shown in Fig. 5, the complexity value of three
representative subjects is getting more and more different
with τ increasing from 4 to 10. When τ is at 4, there is a
slight discrepancy in their complexity value. From Fig. 5,
it can be found that a healthy subject reaches the highest
complexity value most of the time. In addition, there will
be an increase in complexity value before it declines with
the change of υ. Specifically, the complexity value of all
the subjects tends to zero when υ = τ , which means that
the divergence of two BPAs tends to be 0 when they are
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Fig. 6. ∆ complexity value with the influence of time window scale υ and τ .

the same. It’s worth noting that the computed complexity
value remains low when the value of υ is small, because
the elements in the corresponding BPA for υ are quite
limited, which will lead to a divergence result tending to
0. When considering the changing of α, it can be found
that as the value of α increases, the complexity values of
the three representatives become more and more difficult
to distinguish.

The setting of υ and τ is important, since them represent
the truncation approaches of time window. Here, ∆
complexity (the numerical value difference of complexity
between healthy and pathology subjects) is utilized to
analyze how to choose parameters υ and τ . The higher
∆ complexity is, the easier to distinguish healthy and
pathology subjects. As shown in Fig. 6, the orange bar of
each sub-figure represents the optimal value of υ at a fixed
τ , as it has the highest ∆ complexity. It is worth noting
that, for each column, ∆ complexity gradually increases
as τ increases with a fixed α, which means that τ is
recommended to choose the larger value. However, with
the increase of τ , the number of elements in the mass
function built by time windows will also increase by a
geometric multiple, and then a trade-off will be needed. As
for υ, it usually be selected empirically, since the optimal
υ will change with τ and α changing. In addition, different

time series have different characteristics. The selection of
parameters needs to be adaptive based on different time
series data sets. Considering this data set, the best time
window length setting should be τ = 10 and υ = 3, since
α = 0.5 based on Table III.

2) Parameter k: Here, υ and τ are fixed as 5 and 10
before considering the influence of k.

As for the 240 sets of cardiac inter-beat interval time
series, Fig. 7 displays how classification accuracy varies
with the changing of k. Note that accuracy is low when
there are fewer slices, while more slices may cause the
instability of the BRéDOD model, and accuracy will
decline at the same time. It shows that 30 < k < 60 can
lead to better results in pattern classification problems.
Specifically, the highest accuracy can be achieved as
89.56% with k = 41 and α = 0.5. When considering α, it
can be found that the classification accuracy goes up and
then goes down with the increase of k. Particularly, the
performance of BRéDOD model is the worst when α → 1
as classification accuracy hovers around 50%.

Hence, from the information above, the length of time
series N , the scale of time window υ and τ , the segment
slices k and coefficient in belief Rényi divergence α are
able to affect the performance of the BRéDOD model in
different degrees.
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Fig. 7. The pattern classification accuracy of the BRéDOD with the
influence of k.

TABLE IV
The patter classification accuracy based on different methods.

N = 140 N = 300 N = 500

K-means 0.3822 0.3711 0.4078
Spectral clustering 0.4044 0.4100 0.4056
MSE 0.6738 0.7024 0.7248
EOE 0.8230 0.8789 0.8850
BEOE 0.8730 0.8800 0.8912
BRéDOD 0.8056 0.8956 0.8789

E. Comparison
Several classical and recent methods are applied to these

cardiac inter-beat interval time series classification.
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Fig. 8. The pattern classification accuracy in cardiac inter-beat
interval time series.

The pattern classification accuracy based on different
methods is shown in Table IV and Fig. 8. From Table IV,
the accuracy reaches the peak at the value 0.8956 based on
BRéDOD when N = 300, which overtakes other methods
referred to.

It can be found that BRéDOD is far out-performance
than K-means and Spectral clustering. No matter the
length of the time series, these two classical machine
learning methods are less accurate. According to MSE
[65], EOE [66] and BEOE [51], BRéDOD achieves highest
accuracy as 0.8956 with N = 300. In addition, BRéDOD
has outstanding performance in both short-time series
and long-time series. Though EOE and BEOE are able
to reach high accuracy, they need more data to increase
the accuracy.

Hence, the above information illustrates the superiority
of the BRéDOD in complexity measure for pattern classi-
fication. Not only BRéDOD model overtakes the classical
machine learning method, including K-means and Spectral
clustering, but also surpasses several well-known methods,
including MSE, EOE, and BEOE. In this case, the belief
divergence of divergence reflects the complexity of the time
series well.

V. Conclusion
As complexity analysis plays an important part in many

research fields, measuring the complexity of time series is
significant. A new algorithm, belief BRéDOD divergence
of divergence was proposed to figure the complexity of
time series. The main innovation of BRéDOD was that
it measured the inner divergence of a time series twice,
which can effectively reflect the feature of time series data.
In addition, the boundaries of the time series value were
taken into consideration to generate BPAs. Besides, the
superiority of BRéDOD algorithm for complexity measure
and pattern classification was demonstrated based on
cardiac inter-beat interval time series with the highest
classification accuracy. Nonetheless, the BRéDOD model
exhibits a few limitations. Its extensive parameter set
necessitates a careful selection process to identify the
optimal configuration. Besides, there is a reduced likeli-
hood of encountering boundary points when dealing with
time series data distributed over a wide range. So, a
more adaptive model is needed to select boundary points
to construct appropriate mass functions. In summary,
the BRéDOD algorithm has introduced an innovative
approach for assessing the complexity of time series data.
In future research, addressing the parameter-related issues
and applying this method to a broader range of real-time
series data should be considered.
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